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The fundamental tensor for the dynamical equations of the theory of 
elasticity for nonhomogeneous isotropic media is constructed. This prob- 
lem was posed in [ 1 I. The construction is carried out along the lines 
of the developments in 12 1. The immediate application of the results of 
[2 1 is not possible here, because the three-dimensional equations of 
elasticity possess multiple characteristics. 

In problems in the theory of elastic vibrations an important role is 
played by the so-called point sources of vibrations: concentrated forces 
in infinite space, centers of expansion, double forces, concentrated 
couples, concentrated moments, and so forth. 

The known fundamental solution of Volterra for the equations of 
elasticity represents, as may be easily shown, a combination of a center 
of expansion and concentrated moments, with corresponding moment axes 
along the coordinate axes. 

A knowledge of the displacements corresponding to an arbitrary con- 
centrated force enables one to determine easily the displacements cor- 
responding to an arbitrary point-source. 

For a homogeneous elastic medium, the problem of the determination of 
the effect of a concentrated force varying in an arbitrary manner but 
always directed along the x-axis has been solved in finite form in 13 1. 
The corresponding problem for a nonhomogeneous medium is considered 
below. 

1. Formulation of the problem. Suppose that a concentrated 

force acts at a point MO, its magnitude being given by the function x(t). 
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It suffices to consider the special case of a concentrated impulse when 
x(t) = 8(t), h w ere 8(t) is Jlirac’s delta function, since the displace- 
ment vector u; in the general case of the function tit> . is given, in 
terms of the hisplacement vector h, corresponding to a concentrated im- 
pulse, by the formula 

U (M, t) = $ hj (n/r, t - t’) X (t’) dt’ 
0 

The 
tensor 
of the 

components of the vectors hi@!, t ) constitute the elements of a 

m, t) = II h,,(K t)ll, which is called the fundamental tensor 
theory of ela&city. 

,IJ?t us formulate the mathematical problem of the determination of the 
vectors h . . let ui(xL, x2, x3, 
vector X i X(x,, x2, 

t) be the components of the displacement 

x3) and ~1 = /.& x2, x3 ) be lam6’ s parameters, 

P = P($ X2’ x3) be the density of the medium. It will be assumed that 
A, CL, p are analytic functions of x1, x2, x3. 

‘Ihe equations of the theory of elasticity may then he written (see 

Cl I): 

Lu = putt - (A + p) grad div u --Au-divugradh-22Dgradp=K (1.1) 

where 

is the strain tensor. 

let us set u = 0 fort < 0 and consider a sequence of body force 
vectors Kc such that 

K, = 0, r = ) > M (x1, 

s K, dz, c.&, dx, = x (t) ij 

Then, in the limit as c + 0, the corresponding 
correspond to a concentrated force directed along the x.-axis and I 

having magnitude tit>. ‘Ihe limiting vector of these body forces is 

K = 6 (M - MO) x (t) ij (I.3 

where 6(M - M,) is a a-function with singularity at the point M,* Putting 
x(t) = 8(t) in (1.2) we obtain the body-force vector which corresponds 
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to the vector hi.* 

Ihe vector hj may he sought as a solution of the Cauchy problem 

hjlt =O= 0, 2 [t=o = &d (M - MO) 4 (l-3) 

since this vector, when defined to be 0 for t < 0, yields, when operated 
upon by the operator L, the body-force vector (1.2), with x(t) = 8(t). 

E3y means of the fundamental solution tensor the integration of the 
Cauchy problem for the equations of elasticity is reduced to quadratures. 

Indeed, for the equations of the theory of elasticity one has the 
analog of the formula of Green for harmonic functions, the Green-Volterra 
formula 

\ (vL (u) - UL (v)) dzldz2ds,dt = \ (vp (u) - up (v)) dS 
T S 

(pu = pu, - skjnjik) (1.4) 

where uki are the components of the stress tensor, n. are the components 
of the four-dimensional normal, S is the hypersurfacd which bounds the 
four-dimensional volume T and here and in the following repeated indices 
indicate that a sumnation is to be performed. 

let T denote the half-space t > 0, and 

V = hj (M - MO, to - t), lbf = M(% 52, x2), 

and u be the solution of the Cauchy problem 

u Lo = ug, 
th 

-26 I tzO = u1 (I 2) 

Since 

Lv=6(M-MM,)8(t,-tt) 

* Other point-sources correspond to other “delta- like” body forces. For 
example , a center of expansion corresponds to 

grad 8 W - M,) x (t) 

while a double force corresponds to 

x (t) &8 W - MO) ij etc., 
j 
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the integration of the expression uLhj yields the jth component of the 
vector U, and we have 

or, what is the same 

u-&&h& 

where H= I/ hii 11 is the fundamental tensor. 

In order to construct the fundamental tensor it is only necessary to 
solve the Cauchy problem (1.3). L,et us now express the Si-function in 
terms of plane waves (see [2,5,6 I) 

-1). ‘i H (M - MO, t,, - t) K (h&t) dMdt (1.6) . 
O-=+3& 

and suppose that hmj is the solution of the Cauchy problem 

L(h,j) = 0 (1.7) 

b,i(t=o = 0, 
ah,j 
at 1=0x - 8~9:1~M,)6*(0~(rcl-~1'1))i? 

1 

Then, obviously, the sought vector hi is given by the formula 

hj(M,t) = 1 h,$w 

/WI =l 

The solution of the Cauchy problem (l.?), (1.8) will be constructed 
by means of *rayR solutions. 

2. "Rayn solutions of the dynamical equations of elastic 
body (see [6,7 I ). Let f,, be an arbitrary function and fk be a 
sequence of its iterated integrals 

fk (4 = \f&--I(4 &IT (2-l) 

We shall seek solutions of the equation Lu = 0 of the form 
co 
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where y is a certain fixed function. Setting K = 0 in (l.l), substituting 
for u its expression from (2.21, and then equating the coefficient of 
each function fk to zero, we obtain 

Nu,;+~-+-Mu~+~ + Luk = 0 (u-1 = u-2 f 0) (k= -2, --1,o, 1, a,...) 

(2.3) 
where the operator L is the same as in Equation (1.1) and the operators 
N and M are defined as follows: 

Nu = (pn2 - CL (grad TY) u - P-k 14 prad T (grad ru) (2.4) 

Mu = 2~~03 - (k + cl) [d ivugradr + gradfugradr)] -- 

- p IuAr + 2 (grad uR grad 7) ik] - grad h (u grad 7) - 

- (grad l-4 grad T - (grad P grad r) u (2.5) 

gradr = thr rx,, TX,) (2.6) 

Setting k = - 2 in (2.3) we obtain Au, = 0. It is natural to assume 
that ug f 0, hence the determinant of thecoefficients of this linear 
system of algebraic equations must be zero. From this it follows that we 
must have one of the following relations: either ( longitudinal wave case) 

(grad 7)’ = $ rt2, a= f 
x++p 
-7 

P 
uo II grad r (2.7) 

or (transverse wave case) 

@adrY = &rt2, I,+$, u~._Lgrad~ (2.8) 

Au important role in the study of the equation 

(2.9) 

is played by the extremals of Fermat’s functional 
M 

s 
rtS 

z= 7 

Ml 
(2.10) 

If Ml is a fixed point and the integral (2.9) is taken along extremals, 
then the quantity r may be used to characterize points on the extremals. 
A curve in four-dimensional space (x,, x2, x3, t) 

%=%(+ 52 = G(T), $3 = %@), t=-t+conet (2.11) 

will be a characteristic of Equation (2.9). 

Ilet us pass through each point M, of a fixed surface Ic a perpendicular 
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extremal of the integral (2.10); a point of each such extremal is 
characterized by the corresponding value of the parameter r, while the 
points M, are characterized by the two surface parameters a and 8. Thus, 
in a neighborhood of the surface 2 which constitutes a regular field of 
extremals we may introduce curvilinear coordinates a, /3, y such that 

LJTi=&(aj p, T) (i = 1, 2, 3) or x = x (a, P, z) (2.12) 

Consider the longitudinal wave case. From Formulas (2.3) to (2.7) it 
follows that 

U? = 0, u-1 = 0, ugO = 0 

where uoo is the component of the vector u,, which is perpendicular to 
the ray. 

Now suppose that the vectors u_ z, u_ 1, . . ., uk, uko+ 1 are known 

(where uko+ 1 is the component of the vector uk+ 1 which is perpendicular 
to the ray). If we make use of (2.3) and 

uktl = UX& + (~k+~ grad r, U.l+ = Q;z + (Pkfz grad ‘7 

Uk;, , uk;21 gad T, ‘p/i+1 = %+I (4 51, x2, 53) (2.13) 

we obtain 

grad 7 [M (uk;l + (Pk+1 grad 7) + Lnk+lI = 0 

Uk& = - 
M ($+I) + L (u,) 
(h + P) (grad 7)” 

(2.14) 

lhe first of these equations may be rewritten 

2P (grad 9’)” (; (Pk+l ; 7’ - a2 grad ‘pk+l grad r) + -bk+~ i- 

+ grad?? @k&) + L (~k+~)) = 0 (2.15) 

where A is a regular function of the coordinates which does not depend 
on u. 

1 
and which will not be written explicitly, in order to save space. 

If the equation x = x(ra) represents an extremal of the integral 
(2.10), then the curve in four-dimensional space which is given by the 
equations 

x = (z1, 22, rs) = x (%a), 1 = r, + const 

will be a characteristic of the equation 

rlZ = a2 (grad T)~ (2.16) 
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and, consequently, a bicharacteristic of Equation (1.1). 

Equation (2.15) may be rewritten as follows: 

.2?p (grad r)a + + A(P~+I + grad T (M (u& + L (Q)) = 0 (2.17) 

where 

‘Ihe derivative d/da is indeed a time derivative, taken along a bi- 
characteristic. Equations (2.13), (2.14) and (2.17) enable us to deter- 
mine nk + 1 and UC+ 2 once the initial conditions for Equation (2.17) are 
prescribed. ‘Ihus, all the vectors uk of the sequence may be determined. 

Consider now the case of the transverse wave. We shall seek the com- 
ponents of the unknown vectors along the directions of the vectors .x7, 

%J za (see Fquation (2.12)) as functions of the coordinates a, /3, r; 
the operator M of (2.5) takes the form 

M(u)=2pg$-((h+~)(2divugrad~fuAy)- 

-- i [2IgradyI~+ub(Azy,+dr,,)]- 

- grad A (u grad 7) - (grad pu) grad r - (grad p grad r) u (2.1%) 

From Equations (2.3) to (2.8) it follows that u_ 2 z 0, u_ 1 E 0, 
II,,” I 0, where ugo denotes the component of the vector u,, along the ray. 

NOW suppose that the vectors U_ 2, U_ 1, u,,, . . . , uk, uko+ 1 are known 
(where u O k+ 1 is the component of the vector uk+ 1 along the ray). ‘Ihen 

uk+l= uk& + Uk+l,a= + Uk+l,L$ 

uk;x 11 grad ‘6, a=&, B=$j- 

From Equations (2.3) and (2.8) it follows that 

M (uk+J + L (UC) II grad r 

or, what, is the same 

(2.19) 
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+ CQ+~. a -+ &+I, B = t L (u/J + M (u&) I B 
M 

d 
"+& 

c 

ds 
(2.20) 

d5= dt 
ab = 

b 
A?, 

-i; 

where A, B, C, D denote regular functions whose explicit expressions are 
omitted. 

If (2.20) holds, then (2.3) implies that 

L&J +M (ur+J 
uk& = (h+ p)(grad~)~ (2.21) 

3. Construction of the solution of the Cauchy problem (1.7), 
(1.8). Let us now denote by ywa (y&l the solution of the equation 

@adrY = $T? (= k 7t2) (3.1) 

satisfying the following conditions: 

We shall seek the solution of the Cauchy problem (1.7) and (1.8) in 
the form 

h,= 5 Umka (%, z2~ 23, t) [fk (ra (t, 21, 22, z3)) - fk (?‘a (- f, XI, 22, %?))I -!- 
k=O 

+ $ Uokb 

k=0 

where uok 

(2.17) an8 

(% 22, x3, t), [hi (~b (h 21, ~2, 53)) - fk hb (- t, % 521 x3))] (3.2) 

is determined by means of the recurrence relations (2.13) to 

uokb is determined by means of Formulas (2.18) to (2.21). 

'lbe initial condition h, = 0 for t = 0 and Equation (1.1) with K = 0 
are obviously satisfied. 'let us consider the second initial condition 

(1.8). We have 

for t=O (3.3) 

In order that this equation be satisfied it is sufficient that the 

first term in the sum equal the right-hand side and that the remaining 
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terms on the left-hand side equal zero. 

It is natural to put fO(t> = s’(t). Then 

fl (4 = 6 w t f-2 (t) = 8 (t), . . . , fk (k--2)1 = m tk;T” 

where c(t) is the Heaviside function, which equals one for t >/ 0 and zero 
for t < 0. 

In order that (3.3) bid it is then sufficient to require that 

2u*n + 2u~~~ = - 
ij 

8Z2P (IWO) 
for t = 0 (3.41 

%kaa + %kbb = 0 (k>O) for i! = 0 (3.5) 

For t = 0 the solutions y, and yb coincide. For t = 0 the vector uood 
is parallel to grad y, = o and the vector uoos is perpendicular to o. 
By decomposing the vector on the right-hand side of Equation (3.4) into 
its components in the direction of o and perpendicular to w we obtain 
uniquely defined initial data for Jkprations (2.17) and (2.20) for k = -1, 
and then uoo(l and uwob, and tiUoa. and u:,,~ are uniquely determined. Sub- 
stituting the following two equations into (3.5) 

we obtain unique initial data for sEaI, uola and uol,+ at the same time 
U 

ala’ “cdl b’ U,02a’ %iZb are uniquely determined, etc. 

Thus, all the vectors uwka and uokb are uniquely determined and are 
analytic functions. ‘Ihe convergence of the series (3.2) can be established, 
using the method of majorants, exactly as in the case of the general 
hyperbolic equation with non-multiple characteristics. 

It is easy to show that y&t, x1, x2, x3, o) = - y(t, x1, r+, x3, 0). 

Using these relations we obtain finally 
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85 (7,) = 1 1 fory),O 

0 for y < 0 

where v @aj and v tibj are vectors with regular components. 

4. On the singularities of the fundamental tensor. 'Ihus, 
the fundamental tensor is expressed, by means of (3.61, as a sum of 
generalized plane waves of the form (3.2). 

Using Equation (3.6) the analytic properties of the fundamental tensor 
may be studied. We shall content ourselves here with a statement of the 
results, inasmuch as, using the methods of Borovikov 19 1, the author 
studied the fundamental tensor of an arbitrary system which is hyperbolic 
in Petrovskii’s sense [2,11 1 and the analysis of the fundamental tensor 
in our present case may be carried out analogously. 

In particular, the components of the fundamental tensor 

are defined in the neighborhood of the point MO and are equal to zero 
for t < f .(A!, MO). 

For ra< t < rb andrb < t they are analytic functions of their argu- 
ments, and for t = fa and t = rb they have a 6-function-like singularity, 
namely 

hjk (TV lw~ MO) = vjkczfi (t - fa> + vjkbh (t - rb) + 

+ Wjkac (t - za> + Wjkb & (t - zb) (i, k = 1, 2, 3) (4.1) 

where V .ka, 
A 

‘j&b’ ’ ‘j&b j&a’ are regular functions of t, M, Ma, and 6 is 
Heavisi e’s function. 

In the plane case the equations of elasticity are hyperbolic in 
Petrovskii’s sense, since the non-multiple characteristics are then ab- 
sent. The fundamental tensorfor systems which are hyperbolic in 
Petrovskii’s sense was obtained in [ 2 I and [ 11 I . E3y means of consider- 
ations similar to those just carried out in the three-dimensional case, 
one arrives, instead of (4.11, at a formula where the singularity of 
(4.1) is replaced by a singularity of the form l/ 4 x, namely 

(4.2) 
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where V jka and ‘jkk are regular functions of their arguments. 

If the,- parameters X and p and the density p are not analytic 
functions but are just sufficiently smooth functions of the coordinates, 
then the considerations of the present section remain in force, while 
the functions V and W are than no longer analytic but merely sufficiently 
smooth functions of their arguments. 
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